Phylogenetic analysis of recent classical swine fever virus isolates (CSFV) from Karnataka, India

D B SHIVARAJ1, S S PATIL2, D RATHNAMMA3, D HEMADRI4, S ISLOOR5, G B MANJUNATHA REDDY7, R SHARADA8 and H RAHMAN9

Project Directorate on Animal Disease Monitoring and Surveillance, ICAR, Hebbal, Bengaluru, Karnataka 560 024 India

Received: 1 September 2013; Accepted: 30 November 2013

ABSTRACT

Classical swine fever (CSF) outbreaks are detected throughout the year. Tissue (spleen and lymph nodes) samples (6) collected from 5 classical swine fever outbreaks in different districts of Karnataka state were subjected to virus isolation in PK–15 cells and virus could be recovered from all the 6 samples. Virus isolation was confirmed by reverse transcription-PCR using primers specific to 5’UTR region and sequenced. Alignment of 150 nucleotides of 5’UTR region with that of 33 published sequences available in Genbank, including 22 Indian CSFV sequences was done to get better epidemiological information on classical swine fever virus (CSFV). Based on the phylogenetic analysis, the isolates from Karnataka could be grouped into subgroup 2.2. Phylogenetic tree confirmed that members of 2.2 subgroup show higher divergence among themselves when compared to other cluster within subgroup 1.1. The study also revealed involvement of 2 different isolates in an outbreak. Most of the outbreaks in our study are due to recent introduction of new stocks of pigs from other places. Even though group 1 viruses are predominant in India, the group 2 viruses are also gradually spreading as confirmed by frequent detection/isolation of group 2 viruses in the recent years. It appears that subgroup 2.2 viruses are gradually replacing the subgroup 1.1 viruses, indicating the changing epidemiological scenario.

Key words: 5 UTR, CSF, Classical swine fever, Epidemiology, Karnataka, Phylogenetic analysis

MATERIALS AND METHODS

Tissue samples such as spleen and lymph nodes collected from suspected field cases of CSF in different districts of Karnataka were used in the study (Table 1). PK-15 (ATCC) cells maintained using Eagle’s minimal essential medium supplemented with 5% horse serum were used for virus isolation. Briefly, tissue materials were cut into small pieces using sterile scissors and ground in a mortar and pestle with a small amount of phosphate buffered saline (PBS) and sterile sand. The suspension was centrifuged at 1000 × g for 15 min and the supernatant was used for inoculation.

Present address: 2,4,6,7,9 Senior scientist (sharanspin123@rediffmail.com), 1,3,5 Department of Veterinary Microbiology, Veterinary College, Hebbal, Bengaluru 560024 India.
onto preformed monolayer of PK-15 cells. At each passage, positive and negative (mock infected) controls were kept along with test samples. The infected PK-15 cells were observed daily for any changes up to 5 days. After 5 days of infection, total viral RNA was extracted from cell culture supernatant using viral RNA mini kit according to manufacturer and stored at –80°C. The concentration and quality of RNA extracted was measured at a dual wavelength of 260 and 280 nm using spectrophotometer. Reverse transcription-PCR (RT-PCR) was performed targeting the 5’ UTR region using RNA template and previously published primer pairs (Paton et al. 2000) by using one-step RT-PCR kit. Reverse transcription was performed at 50°C for 30 min, followed by initial enzyme activation step at 95°C for 15 min. Subsequent PCR amplification was carried out with 35 cycles of denaturation at 94°C for 1 min, annealing at 50°C for 1 min, extension at 72°C for 1 min followed by final extension for 10 min at 72°C.

The PCR products were analyzed by electrophoresis on 1% agarose alongside 250 bp DNA ladder. The amplified products were purified by using gel using gel extraction kit. After gel purification, all the amplicons were sent for nucleotide sequencing of both strands at a commercial service. Phylogenetic trees were constructed as described previously (Greiser-Wilke et al. 2000). Briefly, 150 nucleotides of the 5’UTR region were aligned with other reference strain sequences available in Genbank using the Clustal X, Ver. 1.8.3 programme and edited manually using GeneDoc (Thompson et al. 1997). Nucleotide divergence/similarity was calculated using Megalign module of Lasergene package. The phylogenetic tree constructed by using the neighbor-joining method. The nomenclature of the groups and subgroups was as per Paton et al. (2000).

RESULTS AND DISCUSSION

Classical swine fever is endemic in Karnataka and outbreaks of the disease are reported every year. Regular monitoring of CSF outbreaks and subtypes involved, are valuable in tracking movement of the virus and spread of disease. Among several genomic regions like E2, NS5B and 5’ UTR of CSFV, 5’ UTR region is targeted for epidemiological study, as it is highly specific for CSFV. In the present study, 6 tissue (spleen and lymph node) samples collected from 5 outbreaks in different districts of Karnataka (Table 1) were subjected to virus isolation in PK-15 cells. Since, CSFV does not generally induce cytopathic effect, presence of virus after each blind passage was determined using RT-PCR. Upon 3 blind passages, virus could be recovered from all the 6 samples; 5 of the 6 isolates did not induce cytopathic effect (Fig. 1; CPE), however the isolate (KAR-1698/12) induced CPE from second passage onwards (Fig. 2). Specificity of the 6 RT-PCR amplicons of 421 bp size (Fig. 3) obtained using primers specific to 5’UTR were confirmed by using restriction enzyme PsI digestion which yielded 2 fragments of 188 bp and 233bp size. Subsequently the products were gel purified and sequenced on both strands. The nucleotide sequences were aligned with the other relevant UTR sequences of the virus and analyzed. Briefly, for nucleotide sequence alignment and analyses, 150 nucleotide sequences from position 200–349 of Riems (GenBank Accession AY 259122) were used.

Alignment of 150 nucleotides of 5’UTR region with that of other sequences available in Genbank, including 22 Indian CSFV isolates was done. Phylogenetic tree constructed from the above aligned sequences is shown in Fig. 4, and it was observed that most of Karnataka isolates have clustered into subgroup 2.2 within the group 2. These 5’ UTR sequences from Karnataka isolates are moderately divergent from the members of the subgroups 1.1 and 2.2. It can also be observed that members of this cluster showed higher divergence among themselves compared to other cluster within subgroup 1.1. The tree is out grouped to the

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Place of origin</th>
<th>District</th>
<th>Month and year of outbreak</th>
<th>No. of pigs died/ total no. of pigs in farm</th>
<th>Procurement of pigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAR-1698/12</td>
<td>H.D. Kote</td>
<td>Mysore</td>
<td>September 2012</td>
<td>60/230</td>
<td>Border areas of Kerala</td>
</tr>
<tr>
<td>KAR-1701/12</td>
<td>Kempapura</td>
<td>Bengaluru</td>
<td>October 2012</td>
<td>120/900</td>
<td>HosakoteBangalore</td>
</tr>
<tr>
<td>KAR-1702/12</td>
<td>Silvepura</td>
<td>Bengaluru</td>
<td>October 2012</td>
<td>40/150</td>
<td>HosakoteBangalore</td>
</tr>
<tr>
<td>KAR-1875/12</td>
<td>Koppa</td>
<td>Chikkamaglure</td>
<td>November 2012</td>
<td>08/24</td>
<td>Tumkur district</td>
</tr>
<tr>
<td>KAR-1884/12</td>
<td>Hagari</td>
<td>Bellary</td>
<td>December 2012</td>
<td>14/32</td>
<td>Border areas of Andra Pradesh</td>
</tr>
<tr>
<td>KAR-1885/12</td>
<td>Hagari</td>
<td>Bellary</td>
<td>December 2012</td>
<td>14/32</td>
<td>Border areas of Andra Pradesh</td>
</tr>
</tbody>
</table>

Figs 1–2. 1. Uninfected PK–15 cells (10×). 2. Cytopathic changes (rounding and detachment of cells) induced by CSFV isolate from H. D. Kote, Mysore (KAR-1698/12) (10x).
corresponding sequence of the Kanagawa/74 (Genbank Acc. No. AB252185) isolate (Fig. 4).

In the present study, all the isolates (KAR-1698/12, KAR-1702/12, KAR-1702/12, KAR-1875/12, KAR-1884/12 and KAR-1885/12) recovered from 5 different outbreaks have grouped within subgroup 2.2 along with other Bengaluru isolates Genbank Acc. No HM138667, HM13868, HM13869 (Chakroborthy et al. 2011) and IND-294/08 isolate which was from an outbreak in Harohalli, Karnataka (Patil et al. 2010). The sequences of KAR-1701/12 showed 100% homology with KAR-1702/12 indicating the possible single source of virus responsible for both the outbreaks. This is not surprising, considering the fact that both outbreak locations are just 2 km apart from each other and frequent exchanges of pig and materials occur between these farms. Interestingly, isolates KAR-1884/12 and KAR-1885/12 which were from the same outbreak in Bellary district were not identical. The reason for this could be attributed to buying behavior of farmer. The said farmer who had small stock of his own was involved in buying and selling of pigs from various other sources and incidentally in the process had CSF outbreak at the same time due to viruses from different sources. The isolates KAR-1698/12 and KAR-1875/12 which were from 2 different districts, Mysore and Chikkamagalur are distinctly placed in the phylogenetic tree (Fig. 4). The study also indicated that, lots of genetic divergence exists among viruses isolated from Karnataka and are distinctly different from the earlier isolates reported by Chakroborthy et al. (2011) and Patil et al. (2010). Most of the outbreaks in our study were due to recent introductions of new stocks of pigs from other places (Table 1).

It can be noted that Patil et al. (2010) reported the involvement of subgroup 2.2 virus in one of the CSF outbreaks in Karnataka. Later Chakroborthy et al. (2011) confirmed the finding. Patil et al. (2012) showed the plausible Chinese origin of the Indian subgroup 2.2 viruses. Even though group 1 viruses are predominant in India, the group 2 viruses are also gradually spreading as confirmed by frequent detection/ isolation of group 2 viruses in the recent years, particularly from the North-Eastern states (Patil et al. 2010, 2012), Uttar Pradesh, Karnataka and from neighboring country like Nepal (Postel et al. 2013a). Thus it appears that subgroup 2.2 viruses are gradually replacing the subgroup 1.1 viruses, which were hitherto predominantly involved in CSF outbreaks. At present, it is not clear whether subgroup 2.2 viruses have any selective advantages over subgroup 1.1 viruses in infecting the hosts but nevertheless their presence in recent outbreaks is indicating the changing epidemiological scenario. It is worth mentioning that group 2 and 3 viruses are now predominantly involved in CSF outbreaks worldover (Leifer et al. 2010). In this context, further studies involving other regions of viral genome such as NS5B and E2 may be useful for resolving the groups, as well as the movement and spread of the disease in Karnataka. Phylogenetic analysis conducted in this study proves to be useful for epidemiological investigation of the CSF outbreaks in Karnataka, India.

ACKNOWLEDGEMENTS

Authors are grateful to PD_ADMAS (Project Directorate on Animal Disease Monitoring and Surveillance), ICAR and Department of Veterinary Microbiology, Veterinary
REFERENCES

